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Abstract
The path-integral renormalization group method is an efficient tool for
computing electronic structure of strongly correlated electron systems.
Combined with the conventional density functional approaches as a hybrid
scheme, it offers a first-principles method for complex materials with involved
electron correlation effects. We assess the efficiency and applicability of the
hybrid scheme by examining applications to Sr2VO4 and YVO3.

1. Introduction

Clarifying electronic structure of strongly correlated electron systems is one of the most
challenging issues in condensed matter physics. In particular, the importance of developing
first-principles numerical methods is widely recognized in the community. The density
functional theory (DFT) supplemented with the local density approximation (LDA) [1, 2]
offers one powerful first-principles method in general, whereas its limitation in the strongly
correlated electron materials is equally well known, where strong quantum fluctuations make
LDA insufficient. The insufficiency of the LDA becomes conspicuous near the Fermi level,
where fluctuations and competing orders have to be seriously considered by more accurate
treatments of many-body effects.

We have recently proposed a hybrid method [3] by a combination of the path-integral
renormalization group (PIRG) method [4, 5] with the conventional DFT approach to overcome
the difficulty of DFT in the strong correlation regime of electrons. Strong quantum fluctuations
defying the DFT approach in the energy scale close to the Fermi level are treated by essentially
an exact scheme of PIRG. Since the PIRG scheme costs much more computation time, we use
it only for the low-energy scale near the Fermi level. This hybrid scheme allows practical,
efficient and accurate computation of complicated real materials with involved spin, orbital and
charge degrees of freedom. In the hybrid DFT-PIRG, we first compute the electronic structure
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far from the Fermi level by using DFT with the low-energy degrees of freedom left open.
This is justified when the bands near the Fermi level are rather separated from the other part
as is seen in transition metal compounds and organic conductors. It enables the downfolding
procedure, where the low-energy effective models are derived from the global band structure
by DFT. PIRG is applied to the derived effective models to clarify properties at the low-energy
scale by treating equally the spatial and dynamical fluctuations in a controllable way.

In this paper, we present recent developments achieved by DFT-PIRG applications to
transition metal oxides such as Sr2VO4 and YVO3, which reveal intriguing properties.

2. Method and models

2.1. Downfolding and the effective Hamiltonian

We start with the downfolding procedure by using the LDA band structure obtained from the
LMTO basis functions [6]. In order to restrict the degrees of freedom to the isolated LDA
bands closest to the Fermi level, we need to reduce the Hilbert space. When the states having
the maximal weight near the Fermi level are denoted as {|d〉} and the rest of the basis functions
as {|r〉}, the whole Hilbert space is spanned as {|χ〉} = {|d〉} ⊕ {|r〉}. By eliminating the
subspace |r〉, the effective tight-binding Hamiltonian for only the d-subspace is obtained.

We now derive the effective Coulomb interaction Ŵr at the isolated Wannier orbitals near
the Fermi level after considering the screening by other bands. For efficient computation,
we take two steps in deriving the screening [7]. In the first step, we employ the constrained
LDA (C-LDA) method [8], where the screening from the valence bands yields Wr1. Hereafter,
we take 3d bands as the bands near the Fermi level. When we further reduce the degrees of
freedom closest to the Fermi level as for the 3d-t2g bands in the recent applications to Sr2VO4

and YVO3, we introduce the second step by the GW scheme [9] by taking Ŵr1 as if it is
the starting bare Coulomb interaction. The random-phase-approximation screening produces
Ŵr (ω) = Ŵr1/(1 − P̂dr (ω)Ŵr1). Here, the polarization P̂dr represents the 3d atomic-orbital
contribution contained in the eg LDA band as well as in the oxygen 2p LDA band. Since
the frequency dependence is small within the range of the t2g bandwidth for transition metal
oxides, the low-frequency limit Ŵr (ω = 0) is taken as the interaction part Û in the effective
Hamiltonian [9].

The kinetic-energy part is also renormalized by the self-energy �(k, ω). This is evaluated
in the GW approximation [9]. We also take into account the self-energy arising from the
dynamical part of the Coulomb interaction Ŵr (ω) − Ŵr (ω = 0) through the GW scheme [9].
Such a self-energy effect appears through Re �, and contributes to the renormalization factor
Z = (1 − ∂�/∂ω)−1

ω=0.
Then the effective Hamiltonian is reduced to a multi-band Hubbard model:

H =
∑

〈i, j〉
m,m′ ,σ

tmm′
i j c†

imσ c jm′σ + 1
2

∑

i,α,β
γ,δ

Uαβγ δc†
iαc†

iβciγ ciδ, (1)

in the Wannier representation for the t2g orbital m = (xy, yz, zx), where c†
imσ (cimσ ) creates

(annihilates) an electron with the spin σ = (↑,↓) at the site i , and nimσ = c†
imσ cimσ . The

Greek symbols stand for the combination (m, σ ) of the indices.

2.2. Path-integral renormalization group method

In order to solve the low-energy effective Hamiltonian, we employ the PIRG method [4, 5].
According to the path integral, the ground-state wavefunction is given by the projection of
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the time evolution operator to the initial state. In PIRG, the ground-state wavefunction is
approximately represented as a linear combination of proper basis states, |�g〉 = ∑L

i=1 ωi |φi〉.
The operation of exp(−τ H ) and the truncation by selecting the optimized basis are
iterated until the obtained lowest energy converges within the fixed Hilbert space L. Linear
extrapolation to the full Hilbert space as a function of the energy variance, obtained by
a systematic increase of L at large L, leads to an accurate estimate of the ground state.
Recently, the quantum-number projection method was implemented in PIRG, which improves
the accuracy by taking account of the symmetry of the Hamiltonian [10].

3. Application to Sr2VO4

3.1. Experimental properties and conventional theories of Sr2VO4

The transition metal compound Sr2VO4 has a K2NiF4-type (layered perovskite) structure with a
strong two-dimensional anisotropy, which is analogous to the mother compound of the high-Tc

superconducting material La2CuO4. While the electronic configuration of V4+ in Sr2VO4 is d1

(one 3d electron), that of Cu2+ in La2CuO4 is d9 (one 3d hole), which indicates the similarity (or
duality) between the two compounds. However, the crystal-field splitting of t2g orbital of V4+
still keeps the degeneracy of the yz and zx orbitals at lower energies than the xy orbital, which
is conspicuously different from the configuration of one 3dx2−y2 hole in La2CuO4 without the
orbital degeneracy. Effects of orbital fluctuations and orderings are characteristic aspects in
Sr2VO4.

Stimulated by the duality with La2CuO4, several experimental studies have been carried
out. The magnetic susceptibilities suggest that the ground state is an antiferromagnetic (AFM)
insulator [11, 12]. The activation energy estimated from the resistivity indicates that a small
Mott gap exists in Sr2VO4 [12, 13]. As far as we know, the spin and orbital structures
are unclear. Recently, a characteristic shoulder structure has been observed in the optical
conductivity for the thin film [14].

However, the conventional theoretical studies are inconsistent with the experimental
results, where the LDA calculation predicts a paramagnetic metal and the unrestricted
Hartree–Fock approximation (HFA) suggests a ferromagnetic (FM) insulator. In this section,
considering carefully the strong correlation effects using the PIRG method combined with DFT,
we investigate the ground-state properties of Sr2VO4 in detail [15].

3.2. Parameters determined from downfolding

After the downfolding procedure, the nearest-neighbour hopping amplitudes are −0.22 eV
(xy–xy), −0.05 eV (yz–yz), and −0.19 eV (zx–zx) in the x direction. We also consider all the
matrix elements up to the third-nearest-neighbour sites in the present study. On the other hand,
the Coulomb interactions of the low-energy effective Hamiltonian are estimated as follows: the
intraorbital terms U are 2.77 eV (xy–xy) and 2.58 eV (yz–yz, zx–zx), the interorbital terms
U ′ are 1.35 eV (xy–yz, zx–xy) and 1.28 eV (yz–zx) and the on-site exchange terms J are
0.65 eV (xy–yz, zx–xy) and 0.64 eV (yz–zx), respectively.

3.3. Spin, orbital and charge in the ground state of Sr2VO4

In order to systematically study correlation effects, a parameter λ is introduced, which scales
the amplitude of all the matrix elements of Coulomb interactions. The amplitude for the real
material is given by λ = 1. The lattice size treated by PIRG is up to 8 × 4 × 1 and 4 × 4 × 2
unit cells with the periodic boundary conditions.
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Figure 1. Ground-state energies as a
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Figure 2. Ground-state spin–orbital structure of
Sr2VO4 for λ ∼ 1 and L = 160.

(This figure is in colour only in the electronic
version)

We first present the ground-state properties of the effective Hamiltonian within the HFA as
a starting point. For the two-dimensional system taken by considering the strong 2D character
of Sr2VO4, we find that the AFM (S = 0) and FM (S = max) states are competing. The
ground state is a complete FM insulator, where the charge gap is about 0.2 eV and 2 × 2 orbital
structure is found.

Now we show results of the PIRG calculations. Note that the dimension of the Hilbert
space in PIRG is up to L = 192. Figure 1 shows the ground-state energy per site of the HFA
and PIRG results. In comparison with the HFA energies, the PIRG results show a substantial
lowering of the energy because of quantum fluctuations correctly taken into account by the
projection process. Energy gains are about 0.1 eV (S = 0) and about 0.05 eV (S = max) at
λ ∼ 1. In particular, for the S = 0 state, quantum fluctuations are very large, which indicates
that the required dimension of the Hilbert space in the S = 0 sector is larger than that in the
S = max sector in order to obtain the accurate ground-state energy. Therefore, the energy gain
in the S = 0 sector becomes larger than that in the S = max sector. In general, the single Slater-
determinant methods, such as the HFA and LDA + U method, have difficulties in describing
the AFM state accurately. For this reason, the ground state obtained by PIRG becomes opposite
to the HFA result. The PIRG ground state is at S = 0 (AFM) and insulating.

The spin and orbital patterns by PIRG show 4 × 2 and 2 × 2 super-structures, respectively,
as shown in figure 2. The dominant orbitals are mostly different from those of the nearest-
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Figure 3. Optical conductivity calculated by HFA at λ = 1, λxy = 0.59, λyz = 0.90, and
λzx = 0.62, which quantitatively reproduce PIRG spin–orbital structure. Solid, dashed and dotted
lines stand for the total conductivity, the contribution of the xy orbital and the contribution of the
yz and zx orbitals, respectively.

neighbour sites, so the FM exchange interaction between the nearest-neighbour sites is induced
from the Kanamori–Goodenough rule. However, a substantial AFM interaction between the
third-nearest-neighbour sites arises from the hoppings between the same orbitals. Such a
magnetic frustration effect is partly the origin of a complex spin–orbital structure.

Let us discuss the metal–insulator transition in the ground state at spin sector S = 0. The
metallic state intersects the insulating state at λ ∼ 0.95. Thus the real ground state at λ = 1
belongs to the insulating ordered phase, but is close to the metal–insulator transition. This is
consistent with the experimental results, which suggest that Sr2VO4 is the AFM Mott insulator
with a small gap. For the larger system size, the obtained result is similar to that of a 4 × 4 × 1
lattice. Therefore, we conclude that the system size dependence is weak.

We conclude that Sr2VO4 is the AFM Mott insulator with a small gap, where the
complicated spin–orbital order is found (shown in figure 2). However, the energy difference
between the ground state and another candidate for the S = 0 sector is of the order of 0.01 eV.
Although we cannot exclude the possibility of the other ordered patterns, the spin–orbital
structures in all candidates have long periodicities due to the existence of magnetic frustrations.

3.4. Optical conductivity

Recently, the optical conductivity has been measured on thin films [14], and shows the
characteristic shoulder structure at ω < 1 eV. It is difficult to investigate the dynamical
physical quantities by PIRG. By employing the HFA eigenstate with the adjustable interaction
parameters λxy , λyz and λzx , to reproduce physical quantities obtained by PIRG (figure 2), we
calculate the optical conductivity.

Figure 3 shows the total and partial optical conductivities in the low-energy regime. Partial
conductivities represent the contributions of the xy orbital and of the yz and zx orbitals.
This peak structure shown in figure 3 consists of the contribution of U ′–J terms. Other
contributions (U ′ and U terms) appear at a higher energy region. In comparison with the
yz and zx components, the xy spectrum becomes broader and the bandgap is strongly reduced
by quantum fluctuations. Thus the shoulder structure appears, which is also consistent with the
experimental result.
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Figure 4. Crystal structure of YVO3. Dark large
and small spheres represent the V and O atoms,
respectively. Light spheres are the Y atoms.

4. Application to YVO3

4.1. Experimental properties and conventional theories of YVO3

In this section, we discuss another application of our hybrid first-principles scheme [16].
The transition-metal oxide YVO3 is a typical Mott insulator with a relatively large charge
gap (∼1 eV), where two valence electrons in the t2g orbitals play a major role in the low-
energy excitations. As seen in figure 4, YVO3 has an orthorhombically distorted perovskite
structure [17]. Due to the GdFeO3 distortion, tilting and rotation of the VO6 octahedra, the
width of the t2g bands is narrowed and mixing between these bands becomes prominent, which
brings about the complicated magnetic and orbital states [17, 18]. At low temperatures, the
magnetic ordering appears with AFM spin alignment both in the a–b plane and along the c axis
(G-type AFM ordering). The orbital is also ordered, where all dxy orbitals are singly occupied
and the other electrons take the dyz or dzx orbital alternately in the a–b plane and the same
orbital along the c axis (C-type ordering).

From the calculations based on the unrestricted HFA [19, 20], the spin ordering (SO) and
the orbital ordering (OO) have been reproduced. However, as commonly seen in the HFA,
they have overestimated the charge gap (∼3.4 eV). Another approach to this material has been
made from the first-principles calculations based on DFT with LDA. The local spin density
approximation (LSDA) with the full-potential linearized augmented-plane-wave method has
failed to reproduce the insulating state [21]. In addition, from the generalized gradient
approximation (GGA), the ground state has resulted in the FM metal [22]. The LDA + U
method has succeeded in describing the correct ground state by choosing a tuning parameter U
to reproduce the experimental bandgap [22, 23].

4.2. Spin, orbital and charge in the ground state of YVO3

Compared to Sr2VO4, YVO3 is much more complicated, where two electrons on the V site
(3d2 configuration) are interacting with each other on the three-dimensional distorted lattice
structure. Therefore, it is important to confirm whether the procedure of reducing the Hilbert
space in the downfolding process works properly even in the system with largely mixed orbitals.
Furthermore, YVO3 has a much larger Mott gap than that of Sr2VO4. It is desired to test
DFT-PIRG in totally different systems to examine a wide applicability. By considering the
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above contrasts, YVO3 offers a good example for this purpose. Here, we examine whether our
approach is able to reproduce the magnitude of the charge gap as well as the correct ordered
state from the first principles [16].

The basic procedures of the downfolding are the same as the case of Sr2VO4. We stress that
we do not need either a procedure specific to the target materials, or tuning of the parameters.
The obtained low-energy model is expressed as a three-band Hubbard-type Hamiltonian in
three dimensions as in equation (1). We note that each unit cell has four V sites and each orbital
has a mixture of eg as well as t2g orbitals due to the GdFeO3-type lattice distortion. The values
of the interactions are calculated as Umm 	 3.2 eV (intraorbital Coulomb), Umm′ 	 2.0 eV
(interorbital Coulomb) and Jmm′ 	 0.6 eV (exchange coupling).

First we employ the HFA as a starting point of the PIRG calculations. Results of the
HF solutions suggest that the ground state has the G-type SO and the C-type OO, which is
consistent with the experiments. The charge gap is estimated to be c = 1.19 eV, which
is also comparable with the experimental result (∼1 eV). In contrast to the previous HF
results [19, 20], our effective model gives a good starting point to discuss the gap amplitude as
well as the order patterns.

Using the HF solutions, we proceed to the PIRG calculations. We have performed the
calculations up to L = 192 on the system with the 32 V sites. The ground-state energy
is estimated by extrapolating the energy linearly with its variance. Figure 5 shows the λ

dependence of the energy and gap, where λ is again the scaling parameter for the interaction.
Compared with the HF solutions, the charge gap obtained by PIRG is reduced by 30–40% due
to the quantum fluctuations. For the realistic case (λ = 1), the charge gap is 0.70 ± 0.07 eV,
which is rather smaller than the experimental estimate of the gap. We note that the experimental
gap is obtained from the optical conductivity, that is, the direct gap. On the other hand, PIRG
calculation gives the indirect gap, which in general should be smaller than the direct gap.
Although the indirect gap is not known so far in experiments, the gap amplitudes seem to
be consistent with each other. It has prominently improved the estimation in comparison with
the HF or DFT results.
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5. Concluding remark

By applying DFT-PIRG methods, some of the transition metal oxides are treated to assess the
efficiency of the method for strongly correlated systems. Physical properties of Sr2VO4 show
the AFM insulator with a small gap, consistent with the experimental results. The optical
conductivity shows a shoulder structure, which all reproduces the experimental result. The
ground-state spin–orbital structure is predicted to have a complex pattern with long periodicity.
For the cubic perovskite oxide YVO3, the PIRG result of spin and orbital ordering at the ground
state is consistent with the experiments. In addition, the gap amplitude, which is comparable
with the experiments, is obtained from the first principles without any adjustable parameters.
The two test cases have proven that DFT-PIRG is a promising tool for difficult problems of
correlated electrons. More controversial and challenging problems such as properties of cuprate
and organic superconductors are planned as the subjects in the future applications.
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